267 lines
10 KiB
Python
267 lines
10 KiB
Python
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
|
|
import argparse
|
|
from typing import Tuple, Union
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import yaml
|
|
|
|
from ultralytics.utils import ASSETS
|
|
|
|
try:
|
|
from tflite_runtime.interpreter import Interpreter
|
|
except ImportError:
|
|
import tensorflow as tf
|
|
|
|
Interpreter = tf.lite.Interpreter
|
|
|
|
|
|
class YOLOv8TFLite:
|
|
"""
|
|
A YOLOv8 object detection class using TensorFlow Lite for efficient inference.
|
|
|
|
This class handles model loading, preprocessing, inference, and visualization of detection results for YOLOv8
|
|
models converted to TensorFlow Lite format.
|
|
|
|
Attributes:
|
|
model (Interpreter): TensorFlow Lite interpreter for the YOLOv8 model.
|
|
conf (float): Confidence threshold for filtering detections.
|
|
iou (float): Intersection over Union threshold for non-maximum suppression.
|
|
classes (dict): Dictionary mapping class IDs to class names.
|
|
color_palette (np.ndarray): Random color palette for visualization with shape (num_classes, 3).
|
|
in_width (int): Input width required by the model.
|
|
in_height (int): Input height required by the model.
|
|
in_index (int): Input tensor index in the model.
|
|
in_scale (float): Input quantization scale factor.
|
|
in_zero_point (int): Input quantization zero point.
|
|
int8 (bool): Whether the model uses int8 quantization.
|
|
out_index (int): Output tensor index in the model.
|
|
out_scale (float): Output quantization scale factor.
|
|
out_zero_point (int): Output quantization zero point.
|
|
|
|
Methods:
|
|
letterbox: Resize and pad image while maintaining aspect ratio.
|
|
draw_detections: Draw bounding boxes and labels on the input image.
|
|
preprocess: Preprocess the input image before inference.
|
|
postprocess: Process model outputs to extract and visualize detections.
|
|
detect: Perform object detection on an input image.
|
|
|
|
Examples:
|
|
Initialize detector and run inference
|
|
>>> detector = YOLOv8TFLite("yolov8n.tflite", conf=0.25, iou=0.45)
|
|
>>> result = detector.detect("image.jpg")
|
|
>>> cv2.imshow("Result", result)
|
|
"""
|
|
|
|
def __init__(self, model: str, conf: float = 0.25, iou: float = 0.45, metadata: Union[str, None] = None):
|
|
"""
|
|
Initialize the YOLOv8TFLite detector.
|
|
|
|
Args:
|
|
model (str): Path to the TFLite model file.
|
|
conf (float): Confidence threshold for filtering detections.
|
|
iou (float): IoU threshold for non-maximum suppression.
|
|
metadata (str | None): Path to the metadata file containing class names.
|
|
"""
|
|
self.conf = conf
|
|
self.iou = iou
|
|
if metadata is None:
|
|
self.classes = {i: i for i in range(1000)}
|
|
else:
|
|
with open(metadata) as f:
|
|
self.classes = yaml.safe_load(f)["names"]
|
|
np.random.seed(42) # Set seed for reproducible colors
|
|
self.color_palette = np.random.uniform(128, 255, size=(len(self.classes), 3))
|
|
|
|
# Initialize the TFLite interpreter
|
|
self.model = Interpreter(model_path=model)
|
|
self.model.allocate_tensors()
|
|
|
|
# Get input details
|
|
input_details = self.model.get_input_details()[0]
|
|
self.in_width, self.in_height = input_details["shape"][1:3]
|
|
self.in_index = input_details["index"]
|
|
self.in_scale, self.in_zero_point = input_details["quantization"]
|
|
self.int8 = input_details["dtype"] == np.int8
|
|
|
|
# Get output details
|
|
output_details = self.model.get_output_details()[0]
|
|
self.out_index = output_details["index"]
|
|
self.out_scale, self.out_zero_point = output_details["quantization"]
|
|
|
|
def letterbox(
|
|
self, img: np.ndarray, new_shape: Tuple[int, int] = (640, 640)
|
|
) -> Tuple[np.ndarray, Tuple[float, float]]:
|
|
"""
|
|
Resize and pad image while maintaining aspect ratio.
|
|
|
|
Args:
|
|
img (np.ndarray): Input image with shape (H, W, C).
|
|
new_shape (Tuple[int, int]): Target shape (height, width).
|
|
|
|
Returns:
|
|
(np.ndarray): Resized and padded image.
|
|
(Tuple[float, float]): Padding ratios (top/height, left/width) for coordinate adjustment.
|
|
"""
|
|
shape = img.shape[:2] # Current shape [height, width]
|
|
|
|
# Scale ratio (new / old)
|
|
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
|
|
|
# Compute padding
|
|
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
|
dw, dh = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2 # wh padding
|
|
|
|
if shape[::-1] != new_unpad: # Resize if needed
|
|
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
|
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
|
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
|
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
|
|
|
|
return img, (top / img.shape[0], left / img.shape[1])
|
|
|
|
def draw_detections(self, img: np.ndarray, box: np.ndarray, score: np.float32, class_id: int) -> None:
|
|
"""
|
|
Draw bounding boxes and labels on the input image based on detected objects.
|
|
|
|
Args:
|
|
img (np.ndarray): The input image to draw detections on.
|
|
box (np.ndarray): Detected bounding box in the format [x1, y1, width, height].
|
|
score (np.float32): Confidence score of the detection.
|
|
class_id (int): Class ID for the detected object.
|
|
"""
|
|
x1, y1, w, h = box
|
|
color = self.color_palette[class_id]
|
|
|
|
# Draw bounding box
|
|
cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
|
|
|
|
# Create label with class name and score
|
|
label = f"{self.classes[class_id]}: {score:.2f}"
|
|
|
|
# Get text size for background rectangle
|
|
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
|
|
|
# Position label above or below box depending on space
|
|
label_x = x1
|
|
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
|
|
|
|
# Draw label background
|
|
cv2.rectangle(
|
|
img,
|
|
(int(label_x), int(label_y - label_height)),
|
|
(int(label_x + label_width), int(label_y + label_height)),
|
|
color,
|
|
cv2.FILLED,
|
|
)
|
|
|
|
# Draw text
|
|
cv2.putText(img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
|
|
|
|
def preprocess(self, img: np.ndarray) -> Tuple[np.ndarray, Tuple[float, float]]:
|
|
"""
|
|
Preprocess the input image before performing inference.
|
|
|
|
Args:
|
|
img (np.ndarray): The input image to be preprocessed with shape (H, W, C).
|
|
|
|
Returns:
|
|
(np.ndarray): Preprocessed image ready for model input.
|
|
(Tuple[float, float]): Padding ratios for coordinate adjustment.
|
|
"""
|
|
img, pad = self.letterbox(img, (self.in_width, self.in_height))
|
|
img = img[..., ::-1][None] # BGR to RGB and add batch dimension (N, H, W, C) for TFLite
|
|
img = np.ascontiguousarray(img)
|
|
img = img.astype(np.float32)
|
|
return img / 255, pad # Normalize to [0, 1]
|
|
|
|
def postprocess(self, img: np.ndarray, outputs: np.ndarray, pad: Tuple[float, float]) -> np.ndarray:
|
|
"""
|
|
Process model outputs to extract and visualize detections.
|
|
|
|
Args:
|
|
img (np.ndarray): The original input image.
|
|
outputs (np.ndarray): Raw model outputs.
|
|
pad (Tuple[float, float]): Padding ratios from preprocessing.
|
|
|
|
Returns:
|
|
(np.ndarray): The input image with detections drawn on it.
|
|
"""
|
|
# Adjust coordinates based on padding and scale to original image size
|
|
outputs[:, 0] -= pad[1]
|
|
outputs[:, 1] -= pad[0]
|
|
outputs[:, :4] *= max(img.shape)
|
|
|
|
# Transform outputs to [x, y, w, h] format
|
|
outputs = outputs.transpose(0, 2, 1)
|
|
outputs[..., 0] -= outputs[..., 2] / 2 # x center to top-left x
|
|
outputs[..., 1] -= outputs[..., 3] / 2 # y center to top-left y
|
|
|
|
for out in outputs:
|
|
# Get scores and apply confidence threshold
|
|
scores = out[:, 4:].max(-1)
|
|
keep = scores > self.conf
|
|
boxes = out[keep, :4]
|
|
scores = scores[keep]
|
|
class_ids = out[keep, 4:].argmax(-1)
|
|
|
|
# Apply non-maximum suppression
|
|
indices = cv2.dnn.NMSBoxes(boxes, scores, self.conf, self.iou).flatten()
|
|
|
|
# Draw detections that survived NMS
|
|
[self.draw_detections(img, boxes[i], scores[i], class_ids[i]) for i in indices]
|
|
|
|
return img
|
|
|
|
def detect(self, img_path: str) -> np.ndarray:
|
|
"""
|
|
Perform object detection on an input image.
|
|
|
|
Args:
|
|
img_path (str): Path to the input image file.
|
|
|
|
Returns:
|
|
(np.ndarray): The output image with drawn detections.
|
|
"""
|
|
# Load and preprocess image
|
|
img = cv2.imread(img_path)
|
|
x, pad = self.preprocess(img)
|
|
|
|
# Apply quantization if model is int8
|
|
if self.int8:
|
|
x = (x / self.in_scale + self.in_zero_point).astype(np.int8)
|
|
|
|
# Set input tensor and run inference
|
|
self.model.set_tensor(self.in_index, x)
|
|
self.model.invoke()
|
|
|
|
# Get output and dequantize if necessary
|
|
y = self.model.get_tensor(self.out_index)
|
|
if self.int8:
|
|
y = (y.astype(np.float32) - self.out_zero_point) * self.out_scale
|
|
|
|
# Process detections and return result
|
|
return self.postprocess(img, y, pad)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--model",
|
|
type=str,
|
|
default="yolov8n_saved_model/yolov8n_full_integer_quant.tflite",
|
|
help="Path to TFLite model.",
|
|
)
|
|
parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image")
|
|
parser.add_argument("--conf", type=float, default=0.25, help="Confidence threshold")
|
|
parser.add_argument("--iou", type=float, default=0.45, help="NMS IoU threshold")
|
|
parser.add_argument("--metadata", type=str, default="yolov8n_saved_model/metadata.yaml", help="Metadata yaml")
|
|
args = parser.parse_args()
|
|
|
|
detector = YOLOv8TFLite(args.model, args.conf, args.iou, args.metadata)
|
|
result = detector.detect(str(ASSETS / "bus.jpg"))
|
|
|
|
cv2.imshow("Output", result)
|
|
cv2.waitKey(0)
|