image_to_pixle_params_yoloSAM/ultralytics-main/ultralytics/engine/predictor.py

512 lines
22 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""
Run prediction on images, videos, directories, globs, YouTube, webcam, streams, etc.
Usage - sources:
$ yolo mode=predict model=yolo11n.pt source=0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/LNwODJXcvt4' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP, TCP stream
Usage - formats:
$ yolo mode=predict model=yolo11n.pt # PyTorch
yolo11n.torchscript # TorchScript
yolo11n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
yolo11n_openvino_model # OpenVINO
yolo11n.engine # TensorRT
yolo11n.mlpackage # CoreML (macOS-only)
yolo11n_saved_model # TensorFlow SavedModel
yolo11n.pb # TensorFlow GraphDef
yolo11n.tflite # TensorFlow Lite
yolo11n_edgetpu.tflite # TensorFlow Edge TPU
yolo11n_paddle_model # PaddlePaddle
yolo11n.mnn # MNN
yolo11n_ncnn_model # NCNN
yolo11n_imx_model # Sony IMX
yolo11n_rknn_model # Rockchip RKNN
"""
import platform
import re
import threading
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
import cv2
import numpy as np
import torch
from ultralytics.cfg import get_cfg, get_save_dir
from ultralytics.data import load_inference_source
from ultralytics.data.augment import LetterBox
from ultralytics.nn.autobackend import AutoBackend
from ultralytics.utils import DEFAULT_CFG, LOGGER, MACOS, WINDOWS, callbacks, colorstr, ops
from ultralytics.utils.checks import check_imgsz, check_imshow
from ultralytics.utils.files import increment_path
from ultralytics.utils.torch_utils import select_device, smart_inference_mode
STREAM_WARNING = """
inference results will accumulate in RAM unless `stream=True` is passed, causing potential out-of-memory
errors for large sources or long-running streams and videos. See https://docs.ultralytics.com/modes/predict/ for help.
Example:
results = model(source=..., stream=True) # generator of Results objects
for r in results:
boxes = r.boxes # Boxes object for bbox outputs
masks = r.masks # Masks object for segment masks outputs
probs = r.probs # Class probabilities for classification outputs
"""
class BasePredictor:
"""
A base class for creating predictors.
This class provides the foundation for prediction functionality, handling model setup, inference,
and result processing across various input sources.
Attributes:
args (SimpleNamespace): Configuration for the predictor.
save_dir (Path): Directory to save results.
done_warmup (bool): Whether the predictor has finished setup.
model (torch.nn.Module): Model used for prediction.
data (dict): Data configuration.
device (torch.device): Device used for prediction.
dataset (Dataset): Dataset used for prediction.
vid_writer (Dict[str, cv2.VideoWriter]): Dictionary of {save_path: video_writer} for saving video output.
plotted_img (np.ndarray): Last plotted image.
source_type (SimpleNamespace): Type of input source.
seen (int): Number of images processed.
windows (List[str]): List of window names for visualization.
batch (tuple): Current batch data.
results (List[Any]): Current batch results.
transforms (callable): Image transforms for classification.
callbacks (Dict[str, List[callable]]): Callback functions for different events.
txt_path (Path): Path to save text results.
_lock (threading.Lock): Lock for thread-safe inference.
Methods:
preprocess: Prepare input image before inference.
inference: Run inference on a given image.
postprocess: Process raw predictions into structured results.
predict_cli: Run prediction for command line interface.
setup_source: Set up input source and inference mode.
stream_inference: Stream inference on input source.
setup_model: Initialize and configure the model.
write_results: Write inference results to files.
save_predicted_images: Save prediction visualizations.
show: Display results in a window.
run_callbacks: Execute registered callbacks for an event.
add_callback: Register a new callback function.
"""
def __init__(
self,
cfg=DEFAULT_CFG,
overrides: Optional[Dict[str, Any]] = None,
_callbacks: Optional[Dict[str, List[callable]]] = None,
):
"""
Initialize the BasePredictor class.
Args:
cfg (str | dict): Path to a configuration file or a configuration dictionary.
overrides (dict, optional): Configuration overrides.
_callbacks (dict, optional): Dictionary of callback functions.
"""
self.args = get_cfg(cfg, overrides)
self.save_dir = get_save_dir(self.args)
if self.args.conf is None:
self.args.conf = 0.25 # default conf=0.25
self.done_warmup = False
if self.args.show:
self.args.show = check_imshow(warn=True)
# Usable if setup is done
self.model = None
self.data = self.args.data # data_dict
self.imgsz = None
self.device = None
self.dataset = None
self.vid_writer = {} # dict of {save_path: video_writer, ...}
self.plotted_img = None
self.source_type = None
self.seen = 0
self.windows = []
self.batch = None
self.results = None
self.transforms = None
self.callbacks = _callbacks or callbacks.get_default_callbacks()
self.txt_path = None
self._lock = threading.Lock() # for automatic thread-safe inference
callbacks.add_integration_callbacks(self)
def preprocess(self, im: Union[torch.Tensor, List[np.ndarray]]) -> torch.Tensor:
"""
Prepare input image before inference.
Args:
im (torch.Tensor | List[np.ndarray]): Images of shape (N, 3, H, W) for tensor, [(H, W, 3) x N] for list.
Returns:
(torch.Tensor): Preprocessed image tensor of shape (N, 3, H, W).
"""
not_tensor = not isinstance(im, torch.Tensor)
if not_tensor:
im = np.stack(self.pre_transform(im))
if im.shape[-1] == 3:
im = im[..., ::-1] # BGR to RGB
im = im.transpose((0, 3, 1, 2)) # BHWC to BCHW, (n, 3, h, w)
im = np.ascontiguousarray(im) # contiguous
im = torch.from_numpy(im)
im = im.to(self.device)
im = im.half() if self.model.fp16 else im.float() # uint8 to fp16/32
if not_tensor:
im /= 255 # 0 - 255 to 0.0 - 1.0
return im
def inference(self, im: torch.Tensor, *args, **kwargs):
"""Run inference on a given image using the specified model and arguments."""
visualize = (
increment_path(self.save_dir / Path(self.batch[0][0]).stem, mkdir=True)
if self.args.visualize and (not self.source_type.tensor)
else False
)
return self.model(im, augment=self.args.augment, visualize=visualize, embed=self.args.embed, *args, **kwargs)
def pre_transform(self, im: List[np.ndarray]) -> List[np.ndarray]:
"""
Pre-transform input image before inference.
Args:
im (List[np.ndarray]): List of images with shape [(H, W, 3) x N].
Returns:
(List[np.ndarray]): List of transformed images.
"""
same_shapes = len({x.shape for x in im}) == 1
letterbox = LetterBox(
self.imgsz,
auto=same_shapes
and self.args.rect
and (self.model.pt or (getattr(self.model, "dynamic", False) and not self.model.imx)),
stride=self.model.stride,
)
return [letterbox(image=x) for x in im]
def postprocess(self, preds, img, orig_imgs):
"""Post-process predictions for an image and return them."""
return preds
def __call__(self, source=None, model=None, stream: bool = False, *args, **kwargs):
"""
Perform inference on an image or stream.
Args:
source (str | Path | List[str] | List[Path] | List[np.ndarray] | np.ndarray | torch.Tensor, optional):
Source for inference.
model (str | Path | torch.nn.Module, optional): Model for inference.
stream (bool): Whether to stream the inference results. If True, returns a generator.
*args (Any): Additional arguments for the inference method.
**kwargs (Any): Additional keyword arguments for the inference method.
Returns:
(List[ultralytics.engine.results.Results] | generator): Results objects or generator of Results objects.
"""
self.stream = stream
if stream:
return self.stream_inference(source, model, *args, **kwargs)
else:
return list(self.stream_inference(source, model, *args, **kwargs)) # merge list of Result into one
def predict_cli(self, source=None, model=None):
"""
Method used for Command Line Interface (CLI) prediction.
This function is designed to run predictions using the CLI. It sets up the source and model, then processes
the inputs in a streaming manner. This method ensures that no outputs accumulate in memory by consuming the
generator without storing results.
Args:
source (str | Path | List[str] | List[Path] | List[np.ndarray] | np.ndarray | torch.Tensor, optional):
Source for inference.
model (str | Path | torch.nn.Module, optional): Model for inference.
Note:
Do not modify this function or remove the generator. The generator ensures that no outputs are
accumulated in memory, which is critical for preventing memory issues during long-running predictions.
"""
gen = self.stream_inference(source, model)
for _ in gen: # sourcery skip: remove-empty-nested-block, noqa
pass
def setup_source(self, source):
"""
Set up source and inference mode.
Args:
source (str | Path | List[str] | List[Path] | List[np.ndarray] | np.ndarray | torch.Tensor):
Source for inference.
"""
self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size
self.dataset = load_inference_source(
source=source,
batch=self.args.batch,
vid_stride=self.args.vid_stride,
buffer=self.args.stream_buffer,
channels=getattr(self.model, "ch", 3),
)
self.source_type = self.dataset.source_type
if not getattr(self, "stream", True) and (
self.source_type.stream
or self.source_type.screenshot
or len(self.dataset) > 1000 # many images
or any(getattr(self.dataset, "video_flag", [False]))
): # videos
LOGGER.warning(STREAM_WARNING)
self.vid_writer = {}
@smart_inference_mode()
def stream_inference(self, source=None, model=None, *args, **kwargs):
"""
Stream real-time inference on camera feed and save results to file.
Args:
source (str | Path | List[str] | List[Path] | List[np.ndarray] | np.ndarray | torch.Tensor, optional):
Source for inference.
model (str | Path | torch.nn.Module, optional): Model for inference.
*args (Any): Additional arguments for the inference method.
**kwargs (Any): Additional keyword arguments for the inference method.
Yields:
(ultralytics.engine.results.Results): Results objects.
"""
if self.args.verbose:
LOGGER.info("")
# Setup model
if not self.model:
self.setup_model(model)
with self._lock: # for thread-safe inference
# Setup source every time predict is called
self.setup_source(source if source is not None else self.args.source)
# Check if save_dir/ label file exists
if self.args.save or self.args.save_txt:
(self.save_dir / "labels" if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
# Warmup model
if not self.done_warmup:
self.model.warmup(
imgsz=(1 if self.model.pt or self.model.triton else self.dataset.bs, self.model.ch, *self.imgsz)
)
self.done_warmup = True
self.seen, self.windows, self.batch = 0, [], None
profilers = (
ops.Profile(device=self.device),
ops.Profile(device=self.device),
ops.Profile(device=self.device),
)
self.run_callbacks("on_predict_start")
for self.batch in self.dataset:
self.run_callbacks("on_predict_batch_start")
paths, im0s, s = self.batch
# Preprocess
with profilers[0]:
im = self.preprocess(im0s)
# Inference
with profilers[1]:
preds = self.inference(im, *args, **kwargs)
if self.args.embed:
yield from [preds] if isinstance(preds, torch.Tensor) else preds # yield embedding tensors
continue
# Postprocess
with profilers[2]:
self.results = self.postprocess(preds, im, im0s)
self.run_callbacks("on_predict_postprocess_end")
# Visualize, save, write results
n = len(im0s)
try:
for i in range(n):
self.seen += 1
self.results[i].speed = {
"preprocess": profilers[0].dt * 1e3 / n,
"inference": profilers[1].dt * 1e3 / n,
"postprocess": profilers[2].dt * 1e3 / n,
}
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
s[i] += self.write_results(i, Path(paths[i]), im, s)
except StopIteration:
break
# Print batch results
if self.args.verbose:
LOGGER.info("\n".join(s))
self.run_callbacks("on_predict_batch_end")
yield from self.results
# Release assets
for v in self.vid_writer.values():
if isinstance(v, cv2.VideoWriter):
v.release()
if self.args.show:
cv2.destroyAllWindows() # close any open windows
# Print final results
if self.args.verbose and self.seen:
t = tuple(x.t / self.seen * 1e3 for x in profilers) # speeds per image
LOGGER.info(
f"Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess per image at shape "
f"{(min(self.args.batch, self.seen), getattr(self.model, 'ch', 3), *im.shape[2:])}" % t
)
if self.args.save or self.args.save_txt or self.args.save_crop:
nl = len(list(self.save_dir.glob("labels/*.txt"))) # number of labels
s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else ""
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
self.run_callbacks("on_predict_end")
def setup_model(self, model, verbose: bool = True):
"""
Initialize YOLO model with given parameters and set it to evaluation mode.
Args:
model (str | Path | torch.nn.Module, optional): Model to load or use.
verbose (bool): Whether to print verbose output.
"""
self.model = AutoBackend(
weights=model or self.args.model,
device=select_device(self.args.device, verbose=verbose),
dnn=self.args.dnn,
data=self.args.data,
fp16=self.args.half,
batch=self.args.batch,
fuse=True,
verbose=verbose,
)
self.device = self.model.device # update device
self.args.half = self.model.fp16 # update half
if hasattr(self.model, "imgsz") and not getattr(self.model, "dynamic", False):
self.args.imgsz = self.model.imgsz # reuse imgsz from export metadata
self.model.eval()
def write_results(self, i: int, p: Path, im: torch.Tensor, s: List[str]) -> str:
"""
Write inference results to a file or directory.
Args:
i (int): Index of the current image in the batch.
p (Path): Path to the current image.
im (torch.Tensor): Preprocessed image tensor.
s (List[str]): List of result strings.
Returns:
(str): String with result information.
"""
string = "" # print string
if len(im.shape) == 3:
im = im[None] # expand for batch dim
if self.source_type.stream or self.source_type.from_img or self.source_type.tensor: # batch_size >= 1
string += f"{i}: "
frame = self.dataset.count
else:
match = re.search(r"frame (\d+)/", s[i])
frame = int(match[1]) if match else None # 0 if frame undetermined
self.txt_path = self.save_dir / "labels" / (p.stem + ("" if self.dataset.mode == "image" else f"_{frame}"))
string += "{:g}x{:g} ".format(*im.shape[2:])
result = self.results[i]
result.save_dir = self.save_dir.__str__() # used in other locations
string += f"{result.verbose()}{result.speed['inference']:.1f}ms"
# Add predictions to image
if self.args.save or self.args.show:
self.plotted_img = result.plot(
line_width=self.args.line_width,
boxes=self.args.show_boxes,
conf=self.args.show_conf,
labels=self.args.show_labels,
im_gpu=None if self.args.retina_masks else im[i],
)
# Save results
if self.args.save_txt:
result.save_txt(f"{self.txt_path}.txt", save_conf=self.args.save_conf)
if self.args.save_crop:
result.save_crop(save_dir=self.save_dir / "crops", file_name=self.txt_path.stem)
if self.args.show:
self.show(str(p))
if self.args.save:
self.save_predicted_images(str(self.save_dir / p.name), frame)
return string
def save_predicted_images(self, save_path: str = "", frame: int = 0):
"""
Save video predictions as mp4 or images as jpg at specified path.
Args:
save_path (str): Path to save the results.
frame (int): Frame number for video mode.
"""
im = self.plotted_img
# Save videos and streams
if self.dataset.mode in {"stream", "video"}:
fps = self.dataset.fps if self.dataset.mode == "video" else 30
frames_path = f"{save_path.split('.', 1)[0]}_frames/"
if save_path not in self.vid_writer: # new video
if self.args.save_frames:
Path(frames_path).mkdir(parents=True, exist_ok=True)
suffix, fourcc = (".mp4", "avc1") if MACOS else (".avi", "WMV2") if WINDOWS else (".avi", "MJPG")
self.vid_writer[save_path] = cv2.VideoWriter(
filename=str(Path(save_path).with_suffix(suffix)),
fourcc=cv2.VideoWriter_fourcc(*fourcc),
fps=fps, # integer required, floats produce error in MP4 codec
frameSize=(im.shape[1], im.shape[0]), # (width, height)
)
# Save video
self.vid_writer[save_path].write(im)
if self.args.save_frames:
cv2.imwrite(f"{frames_path}{frame}.jpg", im)
# Save images
else:
cv2.imwrite(str(Path(save_path).with_suffix(".jpg")), im) # save to JPG for best support
def show(self, p: str = ""):
"""Display an image in a window."""
im = self.plotted_img
if platform.system() == "Linux" and p not in self.windows:
self.windows.append(p)
cv2.namedWindow(p, cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.resizeWindow(p, im.shape[1], im.shape[0]) # (width, height)
cv2.imshow(p, im)
if cv2.waitKey(300 if self.dataset.mode == "image" else 1) & 0xFF == ord("q"): # 300ms if image; else 1ms
raise StopIteration
def run_callbacks(self, event: str):
"""Run all registered callbacks for a specific event."""
for callback in self.callbacks.get(event, []):
callback(self)
def add_callback(self, event: str, func: callable):
"""Add a callback function for a specific event."""
self.callbacks[event].append(func)