image_to_pixle_params_yoloSAM/ultralytics-main/ultralytics/solutions/ai_gym.py

115 lines
5.1 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from collections import defaultdict
from typing import Any
from ultralytics.solutions.solutions import BaseSolution, SolutionAnnotator, SolutionResults
class AIGym(BaseSolution):
"""
A class to manage gym steps of people in a real-time video stream based on their poses.
This class extends BaseSolution to monitor workouts using YOLO pose estimation models. It tracks and counts
repetitions of exercises based on predefined angle thresholds for up and down positions.
Attributes:
states (Dict[float, int, str]): Stores per-track angle, count, and stage for workout monitoring.
up_angle (float): Angle threshold for considering the 'up' position of an exercise.
down_angle (float): Angle threshold for considering the 'down' position of an exercise.
kpts (List[int]): Indices of keypoints used for angle calculation.
Methods:
process: Process a frame to detect poses, calculate angles, and count repetitions.
Examples:
>>> gym = AIGym(model="yolo11n-pose.pt")
>>> image = cv2.imread("gym_scene.jpg")
>>> results = gym.process(image)
>>> processed_image = results.plot_im
>>> cv2.imshow("Processed Image", processed_image)
>>> cv2.waitKey(0)
"""
def __init__(self, **kwargs: Any) -> None:
"""
Initialize AIGym for workout monitoring using pose estimation and predefined angles.
Args:
**kwargs (Any): Keyword arguments passed to the parent class constructor.
model (str): Model name or path, defaults to "yolo11n-pose.pt".
"""
kwargs["model"] = kwargs.get("model", "yolo11n-pose.pt")
super().__init__(**kwargs)
self.states = defaultdict(lambda: {"angle": 0, "count": 0, "stage": "-"}) # Dict for count, angle and stage
# Extract details from CFG single time for usage later
self.up_angle = float(self.CFG["up_angle"]) # Pose up predefined angle to consider up pose
self.down_angle = float(self.CFG["down_angle"]) # Pose down predefined angle to consider down pose
self.kpts = self.CFG["kpts"] # User selected kpts of workouts storage for further usage
def process(self, im0) -> SolutionResults:
"""
Monitor workouts using Ultralytics YOLO Pose Model.
This function processes an input image to track and analyze human poses for workout monitoring. It uses
the YOLO Pose model to detect keypoints, estimate angles, and count repetitions based on predefined
angle thresholds.
Args:
im0 (np.ndarray): Input image for processing.
Returns:
(SolutionResults): Contains processed image `plot_im`,
'workout_count' (list of completed reps),
'workout_stage' (list of current stages),
'workout_angle' (list of angles), and
'total_tracks' (total number of tracked individuals).
Examples:
>>> gym = AIGym()
>>> image = cv2.imread("workout.jpg")
>>> results = gym.process(image)
>>> processed_image = results.plot_im
"""
annotator = SolutionAnnotator(im0, line_width=self.line_width) # Initialize annotator
self.extract_tracks(im0) # Extract tracks (bounding boxes, classes, and masks)
if len(self.boxes):
kpt_data = self.tracks.keypoints.data
for i, k in enumerate(kpt_data):
state = self.states[self.track_ids[i]] # get state details
# Get keypoints and estimate the angle
state["angle"] = annotator.estimate_pose_angle(*[k[int(idx)] for idx in self.kpts])
annotator.draw_specific_kpts(k, self.kpts, radius=self.line_width * 3)
# Determine stage and count logic based on angle thresholds
if state["angle"] < self.down_angle:
if state["stage"] == "up":
state["count"] += 1
state["stage"] = "down"
elif state["angle"] > self.up_angle:
state["stage"] = "up"
# Display angle, count, and stage text
if self.show_labels:
annotator.plot_angle_and_count_and_stage(
angle_text=state["angle"], # angle text for display
count_text=state["count"], # count text for workouts
stage_text=state["stage"], # stage position text
center_kpt=k[int(self.kpts[1])], # center keypoint for display
)
plot_im = annotator.result()
self.display_output(plot_im) # Display output image, if environment support display
# Return SolutionResults
return SolutionResults(
plot_im=plot_im,
workout_count=[v["count"] for v in self.states.values()],
workout_stage=[v["stage"] for v in self.states.values()],
workout_angle=[v["angle"] for v in self.states.values()],
total_tracks=len(self.track_ids),
)