image_to_pixle_params_yoloSAM/readme.md

52 lines
1.5 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

## 下载环境
```bash
pip install ultralytics
pip install opencv-python pycocotools matplotlib onnxruntime onnx torch torchvision
```
## 权重文件
* https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth SAM的权重文件放入 `segment-anything-main`目录下
* https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt yolo11的权重文件放入`ultralytics-main`目录下
## 运行流程
###1. 用yolo11跑出汽车框作为prompt
将汽车图片放入 `ultralytics-main/input下`
```
input/
├── 00060.jpg
├── 00213.jpg
├── ...
├── 00600.jpg
```
运行 `python3 test.py`
生成`output/exp` 保存框出来的汽车和 `output/car_boxes.txt` 保存每个图片框的左上和右下坐标
### 2. 将框的prompt和图片一起输入SAM模型
进入`segment-anything-main`文件夹
运行 `python test_box.py --checkpoint sam_vit_h_4b8939.pth --model-type vit_h --input ../ultralytics-main/input --output ./output --box-file ../ultralytics-main/output/car_boxes.txt`
`segment-anything-main/output` 可看到汽车显著图
### 3. 将显著图进行外接矩形和关键点检测
进入`demo`文件夹,修改`main`函数里所需要的图片路径,如下
```python
side_mask = '../segment-anything-main/output/2_mask.png'
side_rgb = '../ultralytics-main/input/2.png'
out_dir = './result'
process_side(side_mask, side_rgb, out_dir)
```
运行 `python3 point.py`